
J. Fluid Mech. (2007), vol. 584, pp. 157–183. c© 2007 Cambridge University Press

doi:10.1017/S0022112007006350 Printed in the United Kingdom

157

Stability of an evaporating thin liquid film
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We use a newly developed set of interface conditions to revisit the problem of
an evaporating thin liquid film. In particular, instead of the conventional Hertz–
Knudsen–Langmuir equation for the evaporation mass flux, we impose a more general
equation expressing the balance of configurational momentum. This balance, which
supplements the conventional conditions enforcing the balances of mass, momentum
and energy on the film surface, arises from a consideration of configurational forces
within a thermodynamical framework. We study the influence of two newly introduced
terms on the evolution of the liquid film. One of these terms accounts for the transport
of energy within the liquid–vapour interface. The other term, which we refer to as
the effective pressure, accounts for vapour recoil. Both new terms are found to be
stabilizing. Furthermore, the effective pressure is found to affect a time-dependent base
state of the evaporating film and to be an important factor in applications involving
liquid films with thicknesses of one or two monolayers. Specifically, we demonstrate
that consideration of the effective pressure makes it possible to observe the influence
of the van der Waals interactions on film evolution close to the instant of rupture.
Dimensional considerations indicate that one of the most significant influences of
these effects occurs for molten metals.

1. Introduction
Evaporation is a widespread phenomenon accompanying many physical processes.

It plays an important role in the evolution of liquid films. The investigation of liquid
films is a rapidly developing field with a wide spectrum of engineering applications
(including microfluidics, film deposition, cooling, coating and drying). At present, there
are many works devoted to the investigation of different effects helping to predict
or control the evolution of liquid films. Relevant problems show rich behaviour
and encompass many physical phenomena such as capillarity, thermocapillarity,
evaporation and van der Waals interactions. Under certain conditions, each of these
effects can substantially influence the evolution of thin films. For a comprehensive
review see Oron, Davis & Bankoff 1997.

Deryagin & Churaev (1965) showed that long-range intermolecular forces are
capable of initiating flow in a capillary tube and of significantly changing the rate
of evaporation. It was recognized that van der Waals forces become important when
considering of thin films of thickness less than 1000 Å. Sheludko (1967) showed that,
for layer thickness of the order of 100 Å, these forces result in an instability mode
and cause the rupture of the film. Criteria for the stability and rupture of a liquid
film located on a solid substrate were derived by Jain & Ruckenstein (1976). Later,
many works investigated the combined effects of evaporation, capillary and disjoining
pressure in liquid systems with curved interfaces. Important examples of such systems
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include menisci and constrained vapour bubbles. A detailed review of these works is
given by Wayner (1999).

A linear stability analysis of the effect of rapid evaporation on the stability of
a liquid–vapour interface was performed by Palmer (1976). By means of linear
and nonlinear analyses, Burelbach, Bankoff & Davis (1988) used a single long-
wave evolution equation to investigate the influence of effects such as vapour recoil,
thermocapillarity, and the disjoining pressure on liquid-film instabilities and rupture.
Danov et al. (1998) generalized the work of Burelbach et al. (1988) to account for
the presence of a non-volatile dissolved surfactant. This work discussed the influences
of the interfacial viscosity, concentration gradients and Marangoni effects on film
stability.

To describe the dynamics of a phase transformation, an additional interface
condition accounting for the exchange of material between phases is required.
This condition is distinct from, but not inconsistent with, the classical balances
for mass, forces, moments and energy. Moreover, it entails the provision of additional
constitutive relations. In the literature on evaporation the Hertz–Knudsen–Langmuir
equation is commonly used in this capacity. Specifically, the Hertz–Knudsen–
Langmuir equation dictates how the deviation between the temperature of the film
at the liquid–vapour interface from the saturation temperature drives evaporation
or condensation. For a comprehensive discussion of the Hertz–Knudsen–Langmuir
equation, see Schrage (1953); for a modern perspective, see Rose (2000). One drawback
of the Hertz–Knudsen–Langmuir equation is that its derivation is based on the
assumption that the mechanisms underlying evaporation depend only on the states of
the liquid and vapour phases, and are independent of mass, momentum and energy
transfer (Cammenga 1980). Despite the neglect of these effects, the Hertz–Knudsen–
Langmuir equation is, as Koffman, Plesset & Lees (1984) observe, often used without
justification in continuum problems involving transfers of mass, momentum and
energy.

In this work, we consider the stability of an evaporating liquid film using, instead
of the Hertz–Knudsen–Langmuir equation, a more general evaporation boundary
condition. That condition arises from a consideration of configurational forces within
a thermodynamical framework which explicitly accounts for the mass, momentum
and energy transfer across and along the liquid–vapour interface. More importantly, it
supplements the conventional conditions enforcing the balances of mass, momentum
and energy at the interface. For applications involving solid-state phenomena, the
understanding that configurational forces are central to the description of defects
has been understood since the studies of Eshelby (1951) and Herring (1951). Gurtin
(1988, 1995, 2000) developed a framework wherein these forces obey a configurational
momentum balance distinct from and supplemental to the standard (Newtonian)
momentum balance. Gurtin’s framework generalizes classical interface conditions such
as the Gibbs–Thomson equation (Volmer 1939) arising in theories for solidification
to situations far from equilibrium where dissipative mechanisms are non-negligible.
This idea was exploited by Fried, Gurtin & Shen (2006) to derive a complete set
of equations governing the evolution of a sharp interface separating a volatile-
solvent/non-volatile-surfactant solution from a vapour atmosphere. Specifically, it
was shown that, aside from the classical term involving the difference between the
temperatures of the liquid and adjacent vapour at the interface, the interfacial
configurational momentum balance accounting for evaporation includes several
additional terms. Among these is a term accounting for the combined influence
of the capillary and disjoining pressure similar to that considered by Ajaev &
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Figure 1. Geometry of the system.

Homsy (2001) and Wayner (2002). For brevity, we refer to this as the effective
pressure term. We find that a time-dependant base state of evaporating liquid
film is tangibly influenced by the effective pressure term. In particular, the effective
pressure strongly affects the film rupture processes and is an important factor in the
consideration of liquid films with thicknesses of one or two monolayers. These factors
lead to a revised understanding of the stability of an evaporating film. Parameter
domains where the contributions of the newly introduced terms are important are
determined.

The organization of the paper is as follows. In § 2, we formulate the problem and
present the governing equations. The time-dependent base state and the influence
of the effective pressure on that state are examined in § 3. The effect of different
parameters entering the model on the linear stability of the liquid film is presented
in § 4. In § 5, we generalize all previous results to account, in the manner of
Danov et al. (1998), for the presence of a non-volatile dissolved surfactant. Finally,
we summarize and briefly discuss our results in § 6. Details of the long-wave
approximation applied to derive of the evolution equations are presented in the
Appendix.

2. Formulation of the one-sided problem
The system under consideration is a thin film of a viscous incompressible liquid,

resting on a horizontal solid substrate (figure 1). The film occupies the region between
the solid boundary at z = 0 and a free boundary at z = h(x, t). The buoyancy force
is neglected and we suppose that the liquid is heated from the solid substrate and
evaporates at the free surface.

Following Burelbach et al. (1988), we assume that the density ρv > 0, kinematic
viscosity νv > 0, and thermal conductivity κv of the vapour phase are much smaller
than their counterparts ρ, ν and κ in the liquid phase,

ρv � ρ, νv � ν, κv � κ,

so that the use of a one-sided model is justified.
Within the liquid film, the velocity, pressure (of the liquid measured relative to the

pressure of vapour), and absolute temperature fields u, p, and θ are governed by the
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Navier–Stokes, heat conduction and continuity equations:

Du
Dt

= − 1

ρ
∇p + ν∇2u, (2.1a)

ρc
Dθ

Dt
= κ∇2θ. (2.1b)

∇ · u = 0. (2.1c)

Here, c denotes the specific heat of the liquid and, as is usual, D/Dt is the material
time derivative and ∇ is the spatial gradient operator.

At the liquid–solid interface z = 0, we invoke the no-slip condition for the velocity
field and assume that the temperature is given:

u = 0, θ = θb. (2.2)

Letting θs denote the saturation temperature (i.e. the temperature at which liquid
and vapour phases are in thermodynamic equilibrium), we assume that the interfacial
free-energy density ψx depends linearly on the interfacial temperature θ , so that†

ψx = ψx
s − ηx

s (θ − θs), (2.3)

where ψx
s and ηx

s are the constant values of the interfacial free-energy and entropy
densities arising for θ = θs .‡ The interface conditions of Fried et al. (2006) then
specialize to:

J = ρ(u · n − V ) = ρv(uv · n − V ) = −ρV mig, (2.4a)

θsη
x
s (KV − ∇s · us) = κ∇θ · n − lV mig, (2.4b)

A

6πh3
+ Sn · n −

(
p − J 2

ρv

)
= ψxK, (2.4c)

Sn · t = −ηx
s ∇sθ · t, (2.4d)

βsV
mig = −l

(
θ

θs

− 1

)
−

(
p − J 2

ρv

)
+ 1

2
ρ|u|2. (2.4e)

Here, n and t denote the interfacial unit tangent and normal vectors, the latter being
directed from the liquid into the vapour and K denotes the interfacial curvature. Also,
u and uv are the interfacial limits of the velocities in the liquid and vapour phases,
ui is the velocity describing the evolution of the liquid–vapour interface, V = ui · n
is the (scalar) normal velocity of the interface, V mig = V − u · n is the velocity of the
interface relative to the liquid velocity, and us = (u · t)t is the tangential component
of the velocity of the liquid at the liquid–vapour interface.

In (2.4b–d), ∇s denotes the surface gradient. Given scalar and vector fields f and f
defined on the surface, ∇sf and ∇s · f can be computed using the normally constant
extensions f e and f e of f and f via ∇sf = �∇f e and ∇s · f = � : ∇ f e, where

� = 1 − nn

† Generally, there is a difference between the interfacial free-energy density ψx and the surface
tension σ . When surfactant with interfacial molecular density nx is taken into account, ψx and σ
are related by ψx = σ + nxµ − (α + λ)tr�, where µ is the chemical potential of the surfactant,
� = �D� is the interfacial stretching tensor, and λ + α > 0 is the interfacial dilatational viscosity.
When surfactant is absent, so that nx = 0 and the viscosities of the interface are of negligible
importance, we have ψx = σ . When surfactant is present, as is the case in § 5, we have ψx �= σ .

‡ Consistent with the notation of Fried et al. (2006), a superscript ‘x’ distinguishes an interfacial
excess quantity (Gibbs 1878) from a bulk quantity.
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denotes the interfacial projector (with ab being the dyadic product of two vectors a
and b, defined so that (ab)c = (b · c)a). In (2.4c–d), S = 2ρνD is the conventional
Newtonian extra stress, where D = (∇u + (∇u)�)/2 is the bulk rate-of-stretch. The
parameters l > 0 and βs are the latent heat of vaporization and a modulus associated
with the kinetics of attachment and detachment at the interface. Further, A is the
Hamaker constant – the value of which depends on the properties of the liquid and
the substrate.

The system of interface conditions (2.4) involves two contributions in addition to
those discussed by Burelbach et al. (1988). These include the term θsη

x
s (KV − ∇s · us),

in the energy balance (2.4b), which accounts for the transport of energy along the
liquid–vapour interface. Physically, this term provides an additional mechanism for
energy dissipation within the interface. To our knowledge, the influence of this term
on liquid film evolution has not been studied previously in the literature. The other
contribution is formed by the combination of the second and the third terms on the
right-hand side of (2.4e), which can be viewed as an effective pressure accounting
for vapour recoil through the combination p − J 2/ρv and kinetic energy through
(1/2)ρ|u|2. A condition similar to (2.4e) and relating the evaporation mass flux to
the temperature difference and pressure was used by Moosman & Homsy (1980) to
determine the shape of an evaporating liquid meniscus. The influence of this pressure
term on the dynamics of an evaporating meniscus is also discussed by Wayner
(1999). Note, however, that the presence of the vapour recoil term in the interfacial
configurational momentum balance (2.4e) being distinct from that in the interfacial
standard momentum balance (2.4c) has not been considered previously.

The goal of this paper is to investigate the influence of the energy flux along the
interface and the effective pressure on the stability of the evaporating film. In the
lubrication approximation used in this paper, the terms θsη

x
s KV and (1/2)ρ|u|2 turn

out to be small in comparison to the leading-order terms −θsη
x
s ∇s · us and p − J 2/ρv;

in the subsequent analysis, these leading-order terms are the dominant contributions
to the interfacial energy flux and the effective pressure terms, correspondingly.

2.1. Scaling of the model

Letting h0 denote a characteristic measure of the film thickness (e.g. the initial,
undisturbed thickness of the film), we introduce the following dimensionless variables

x̃ =
x
h0

, t̃ =
νt

h2
0

, ũ =
h0u
ν

, h̃ =
h

h0

, p̃ =
h2

0p

ρν2
,

J̃ =
Lh0J

κ
θ
, θ̃ =

θ − θs


θ
, ψ̃x =

ψx

ψx
s

, η̃x =
ηx

ηx
s

,

⎫⎪⎪⎬
⎪⎪⎭

(2.5)

where

L =
l

ρ

denotes the latent heat per unit mass and


θ = θb − θs
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denotes the temperature drop between the base and the free surface of the film. This
scaling gives rise to the following dimensionless numbers:

Pr =
ρcν

κ
, M =

h0η
x
s c
θ

2κν
, D =

ρv

ρ
,

C =
ηx

s 
θ

ψx
s

, Σ =
h0ψ

x
s

ρν2
, Π =

−A

6πh0ρν2
, E =

κ
θ

ρνL
,

N =
ηx

s νθs

h0κ
θ
, A1 =

βsκθs

ρlh0L
, A2 =

ρν2θs

h2
0l
θ

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.6)

Here, Pr and M are Prandtl and Marangoni numbers; D is the ratio of the density
of the vapour phase to that of the liquid phase; C and Σ are the capillary and
the reverse capillary numbers; Π is the dimensionless Hamaker constant; E is the
evaporation number; N is a parameter which accounts for the energy flux along the
interface; A1 characterizes how far the system is from thermodynamic equilibrium;
A2 accounts for the magnitude of the effective pressure.

Dropping the superposed tildes from the dimensionless variables (2.5), the scaled
bulk evolution equations following from (2.1) are:

Du
Dt

= −∇p + ∇2u

Pr
Dθ

Dt
= ∇2θ,

∇ · u = 0;

the dimensionless boundary conditions on the substrate following from (2.2) are:

u = 0, θ = 1; (2.7a, b)

the conditions at the liquid–vapour interface following from (2.4) are:

EJ = u · n − V, (2.8a)

N(KV − ∇s · us) = ∇θ · n + J, (2.8b)

Π

h3
− p + 2Dn · n = −E2J 2

D
+ ΣK(1 − Cθ), (2.8c)

−Dn · t =
M

Pr
∇sθ · t, (2.8d)

A1J = θ + A2

(
p − E2D−1J 2 − 1

2
u2

)
.

Assuming that the horizontal scale of the liquid motion is significantly larger than
the vertical one and that the time evolution is slow enough, a long-wave approximation
can be applied. Writing X, Z, U and W for the long-wave dimensionless counterparts
of x, z, u and w; P , Θ and H for the variables corresponding to dimensionless pressure,
temperature, and the film thickness, we derive the leading-order equations following
the procedure described by Williams & Davis (1982). Details of the derivation are
given in the Appendix. The leading-order dimensionless problem consists of: bulk
equations

−PX + UZZ = 0, (2.9a)

−PZ = 0, (2.9b)

θZZ = 0, (2.9c)

UX + WZ = 0; (2.9d)
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boundary conditions at the solid substrate

W = 0, U = 0, Θ = 1; (2.10)

and boundary conditions at the liquid–vapour interface Z = H (X, T )

ĒJ = −HT − HXU + W, (2.11a)

N̄VX = −ΘZ − J, (2.11b)

P = Ē2D̄−1J 2 +
Π̄

H 3
− Σ̄HXX, (2.11c)

1
2
UZ +

M̄

Pr
(ΘX + HXΘZ) = 0, (2.11d)

A1J = Θ + Ā2(P − Ē2D̄−1J 2). (2.11e)

Equations (2.9b) and (2.9c) indicate that, to leading order, the dimensionless pressure
P is independent of the vertical coordinate Z and the dimensionless temperature Θ is
a linear function of Z. Applying the boundary condition (2.11c) at Z = H , we obtain

P = Ē2D̄−1J 2 +
Π̄

h3
− Σ̄hXX,

Θ = 1 + c1Z,

where c1 depends on X and T . Integration of (2.9a, d) gives explicit representations

U (Z) =
PX

2
Z(Z − H ) +

V
H

Z

and

W (Z) = −PXX

2

(
Z3

3
− HZ2

2

)
+

PX

4
Z2HX −

(
VZ2

2H

)
X

for the velocity components U and W in terms of the unknown height H and
unknown horizontal component V of the liquid velocity at the interface. Expressing
the pressure P in (2.11e) through (2.11c) we obtain

A1J = Θ − Ā2

(
Σ̄HXX − Π̄

H 3

)
,

which determines the constant c1 as

c1(J ) =

[
A1J − 1 + Ā2

(
Σ̄HXX − Π̄

H 3

)]
1

H
.

To simplify notation, we return to the original variables. To the leading-order, the
solution to the problem (2.9)–(2.11) splits into two subsystems. The first subsystem,
which determines how u, w and θ depend on z, has the form

u(z) =
px

2
z(z − h) +

V
h

z, (2.12a)

w(z) = −pxx

2

(
z3

3
− hz2

2

)
+

px

4
z2hx −

(
Vz2

2h

)
x

, (2.12b)

θ(z) = 1 +

[
A1J − 1 + A2

(
Σhxx − Π

h3

)]
z

h
. (2.12c)
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From (2.12), knowledge of p, h, V and J is sufficient to determine u, w and θ . The
second subsystem determines the long-wave evolution of the system and has the form

p = E2D−1J 2 +
Π

h3
− Σhxx (2.13a)

EJ = −ht + 1
12

(pxh
3)x − 1

2
(Vh)x, (2.13b)

NVx =

[
1 − A1J − A2

(
Σhxx − Π

h3

)]
1

h
− J, (2.13c)

pxh

2
+

V
h

+ 2MP −1

[
A1Jx + A2

(
Σhxxx +

3hxΠ

h4

)]
= 0. (2.13d)

This set of equations represents a closed system for the unknown variables p, h, V
and J . In the system (2.13), the term with coefficient A2 introduces capillary and
disjoining pressure effects into the energy and momentum balance equations (2.13c)
and (2.13d). It is important to note that in the momentum balance, the dimensionless
numbers MA1/P and MA2Σ/P accounting for mass flux and capillary pressure are
both independent of the scale h0 of the film thickness.

When there is no entropy transport along the film surface and the effective pressure
is neglected, so that N = A2 = 0, the system (2.13) can be reduced to a single
evolution equation of the form

ht +
E

A1 + h
+

[(
2E2h3

3D(A1 + h)3
+

Π

h
+

MA1h
2

P (A1 + h)2

)
hx +

Σh3hxxx

3

]
x

= 0.

This equation was studied in detail by Burelbach et al. (1988). For this reason, in
the following analysis we focus our attention on influences of the entropy transport
(N �= 0) and the effective pressure (A2 �= 0) terms on the film evolution and stability.

3. Base state
The base state of the evaporating film is time dependent. Assuming that changes

in film thickness occur only because of evaporation and that otherwise the film
is motionless (u = 0) with properties independent of the x-coordinate (so that all
derivatives with respect to x vanish), we rewrite the governing equations (2.7a, b) in
the form:

p̂z = 0, (3.1a)

Pr θ̂t = θ̂zz. (3.1b)

Since u = 0, the incompressibility equation ∇ · u = 0 is trivially satisfied. Here a
superposed hat is used to denote a variable describing the time-dependent base state.
The boundary condition (2.7b) on the substrate reduces to

θ̂ = 1; (3.2)

at the liquid–vapour interface, the boundary conditions (2.8) become

EĴ = −ĥt , (3.3a)

Ĵ = −θ̂ z, (3.3b)

p̂ = E2D−1Ĵ 2 +
Π

ĥ3
, (3.3c)

A1Ĵ = θ̂ +
A2Π

ĥ3
. (3.3d)
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Equation (3.1b) has exponentially decaying time-dependent solutions. To solve the
stability problem, we will use perturbations in the form of normal modes which may
grow exponentially in time. We therefore consider such a quasi-static limit of the
base state problem (3.1)–(3.3), for which the slow evolution of the base state may be
neglected relative to exponentially growing perturbations developing on top of the
base state. This can be achieved in the following two cases.

(i) Case E � 1 of slow evaporation but Prandl number Pr of O(1). It is then
convenient to make the transformation (z, t) �→ (z, Et) and seek a solution in powers
of E:

p̂ = E−1(p0 + Ep1 + · · · ),
θ̂ = θ0 + Eθ1 + · · ·,
Ĵ = J0 + EJ1 + · · ·.

Assuming that D, Π and A2 can be represented as D = E3D̄, Π = EΠ̄ and A2 = Ā2/E,
where D̄ ∼ Π̄ ∼ Ā2 ∼ O(1), the resulting leading-order system is:

p0z
= 0,

θ0zz
= 0,

z = 0 : θ0 = 1,

z = ĥ(t) :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

J0 = −ĥt ,

J0 = −θ0z
,

p0 = E3D−1J 2
0 +

EΠ

ĥ3
,

A1J0 = θ0 +
A2Π

ĥ3
.

(3.4)

(ii) Case Pr � 1 of small Prantdl number but evaporation number E of O(1). This
case is relevant to molten metals, for which the Prandtl number is of the order of
10−3 to 10−2. Under these circumstances, a solution can be sought in powers of Pr:

p̂ = Pr−1(p0 + Pr p1 + · · · ),
θ̂ = θ0 + Pr θ1 + · · ·,
Ĵ = J0 + Pr J1 + · · ·.

Assuming that D = Pr D̄, Π = Pr Π̄ and A2 = Ā2/Pr, where D̄ ∼ Π̄ ∼ Ā2 ∼ O(1),
we arrive at:

p0z
= 0,

θ0zz
= 0,

z = 0 : θ0 = 1,

z = ĥ(t) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

EJ0 = −ĥt ,

J0 = −θ0z
,

p0 = Pr E2D−1J 2
0 +

Pr Π

ĥ3
,

A1J0 = θ0 +
A2Π

ĥ3
.

(3.5)
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Figure 2. (a) Evolution of the film thickness for different parameters A2. A2 = 20, A2 = 100
(dotted lines); A2 = −20, A2 = −100 (solid lines). Time is measured in the units of disappearance
time for the case A2 = 0 (dashed line). (b) Film thickness as the function of the parameter A2:
h∗ = (−A2Π)1/3 for Π = 1 × 10−4 (dotted line), Π = 1 × 10−3 (dashed line), Π = 1 × 10−2 (solid
line).

To the leading order, the solution to the systems (3.4) and (3.5) can be represented in
the original variables as:

ĥt = −1 + A2Π/ĥ(t)3

A1 + ĥ(t)
E, (3.6a)

Ĵ (t) = −ĥt /E, (3.6b)

θ̂ (t) = 1 − Ĵ (t)z, (3.6c)

p̂(t) = E2D−1Ĵ (t)2 +
Π

ĥ(t)3
. (3.6d)

The nonlinear ordinary differential equation (3.6a) was integrated numerically using
the Runge–Kutta method. Typical values of the Hamaker constant are usually
small. According to Wayner (1998), the Hamaker constants for water, ethanol
and benzine are 3.7 × 10−20 J, 3.6 × 10−20 J and 5 × 10−20 J, respectively. If we
neglect the dimensionless parameter A2Π , which is small (for water, A2Π ∼ 10−5)
in comparison to 1 in the numerator of (3.6), the base state takes the simple form

ĥ(t) = −A1 +
√

(A1 + 1)2 − 2Et investigated by Burelbach et al. (1988). Note that
the solution to (3.6) does not satisfy the arbitrary initial temperature distribution
across the layer and has a singularity at the disappearance time td when A1 = 0 and
h =0. Burelbach et al. (1988) addressed these issues and showed that nevertheless the
solution provides a good approximation in the intermediate time regime. Also we can
see that the energy flux characterized by N does not affect the base state (3.6).

Equation (3.6) suggests that, for small enough film thickness h, the base state is in-
fluenced by the disjoining pressure term proportional to A2. Depending on the proper-
ties of the liquid and the underlying substrate, we can expect cases where the film
partially (Π > 0) or completely (Π < 0) wets the substrate. For Π > 0, the film ruptures
once it thins to a certain critical thickness. The evolution of the film thickness in
the base state according to (3.6) is presented in figure 2(a) with dotted lines. All
parameters except A2 are for water. In this case, increasing A2 reduces td . Note that
the effect is small. To demonstrate it, we took A2 = 100. For water, A2 is ∼0.01.
Our choice is therefore unrealistically large and is made only to suggest what may
happen for other substances. The solution shown with the dashed line indicates the
demarking case A2 = 0.
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Burelbach et al. (1988) (A2 = 0 in (3.6a)) showed that the vertical velocity ht

behaves as ht ∼ 1/(A1 + h) when h → 0. Therefore in the limiting case of A1 = 0, the
lubrication approximation breaks down. In contrast to this, the evolution equation
(3.6a) shows that, in the presence of non-vanishing effective pressure, the expression
for ht is always singular, even for the cases when A1 �= 0, and that changes in the
base state occur even faster. Specifically, ht ∼ A2/(A1 + h)h3 as h → 0. The reduction
of the disappearance time owing to the disjoining pressure imposes even stricter
limitations on the range in which the lubrication approximation is valid. Also, this
result demonstrates the importance of the effective pressure term in problems of the
nonlinear film evolution leading to rupture.

For the case Π < 0, van der Waals forces are able to prevent further evaporation
when the film reaches the critical thickness (as determined by the case Π > 0) and
the liquid film forms a thin layer that covers the substrate without rupturing. A
discussion of the situation when the van der Waals forces suppress evaporation from
the adsorbed liquid film in systems where the liquid completely wets the substrate
is given by Moosman & Homsy (1980) and by Wayner (1999) for a meniscus. The
evolution of the film thickness base state for the case Π < 0 is shown with solid lines
in figure 2(a). At the moment t∗ when the disjoining pressure suppresses evaporation,
a new stationary-state solution (‘adsorbed layer’) is achieved. We determine such a
solution by setting ht in (3.6a) equal to zero. This solution is characterized by zero
mass flux, constant temperature across the layer, and pressure given by the disjoining
pressure:

h∗ = (−A2Π)1/3, (3.7a)

J ∗ = 0, (3.7b)

θ∗ = 1, (3.7c)

p∗ =
Π

(h∗)3
=

1

−A2

. (3.7d)

Depending on the parameters characterizing the liquid and the substrate, the thickness
of this stationary layer varies according to (3.7). The dependence of the dimensionless
layer thickness h∗ on the parameter A2 is shown in figure 2(b) for different values of
the dimensionless Hamaker constant Π . Even though the relative magnitudes of the
coefficients A2 and Π are small, the figure shows that we can expect to obtain a film
thickness of one or a few monolayers. To see explicitly which physical variables affect
the thickness h of the layer (3.7a), we use dimensional quantities to give:

h =

(
−Aθs

6πh3
0l
θ

)1/3

.

This expression agrees with the estimate for the adsorbed film thickness obtained by
Wayner (1999). We see that for A < 0, the thickness h increases with the saturation
temperature θs and the magnitude |A| of the dimensional Hamaker constant. Also h

decreases with the latent heat of vaporization and with increasing values of the initial
temperature difference 
θ across the layer.

The results of this section (table 1) show that, since the base state is independent
of the horizontal coordinate, the structure is not affected by the energy flux along the
liquid–vapour interface. The influence of the effective pressure increases toward the
disappearance time. In the absence of the effective pressure, the base state is insensitive
to the sign of the Hamaker constant and, therefore, there is a degeneracy with respect
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Variable Units Water Sodium

θs K 373 1156

θ K 10 2
ρ kg m−3 960 750
ν m2 s−1 3 × 10−7 2 × 10−7

κ Jm−1 s−1 K−1 0.68 48
c J kg−1 K−1 4166 1280
L J kg−1 2.3 × 106 4.24 × 106

ηx
s N m−1 K−1 1.8 × 10−4 0.94 × 10−4

ψx
s Nm−1 5.89 × 10−2 1.2 × 10−1

A J 10−20 10−21

βs kg m−2 s
−1

106 106

Table 1. Material properties of water and molten sodium. Parameters are taken near the
boiling temperature.

to the cases when liquid partially or absolutely wets the substrate. The presence of the
effective pressure alleviates this degeneracy and leads to a rich spectrum of solutions
that evolve from the base state.

4. Linear stability of the film
To investigate the stability of the system (2.13) we perturb the time-dependent base

state in the form

h(t, x) = ĥ(t) + H (t)eikx, (4.1a)

J (t, x) = Ĵ (t) + J (t)eikx, (4.1b)

V (t, x) = iV (t)eikx, (4.1c)

where k is the wavenumber, and obtain an ordinary differential equation

Ḣ /H = F (t, k, A1, A2, D, E, M, Pr, N, Π, Σ) (4.2)

describing the evolution of disturbances to the interface. Integrating (4.2) over t from
t = 0 to t = t∗, with t∗ < td , we have

H (t∗) = H (0) exp(σ (t∗)t∗),

where

σ (t∗) =
1

t∗

∫ t∗

0

F (t, k, A1, A2, D, E, M, Pr, N, Π, Σ) dt

is an effective growth rate which is calculated numerically. We also assume that there
exists a limiting case of a time-independent base state, frozen at the instant t = 0.
For this case, in (4.1) we take ĥ = 1 and Ĵ = (1 + A2Π)/(A1 + 1) and we use the
following expression for the growth rate:

ω = F (0, k, A1, A2, D, E, M, Pr, N, Π, Σ). (4.3)

Numerical experiments performed with different parameter values showed that the
evaporation number E exerts a significant influence on stability. To demonstrate this
influence, we plot in figure 3 the effective growth rate ω for increasing values of E,
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Figure 3. Three pairs of dispersion curves for increasing values of the evaporation number
E = 0.03, E = 0.04 and E = 0.05. (a) Change due to the influence of N . Dashed curve indicate
cases with N = A2 = 0. Solid curves show cases with N = 0.3 and A2 = 0. (b) Change due
to the influence of A2. Dashed curve shows the case N = A2 = 0. Solid curves show the case
N = 0 and A2 = 0.015.

Parameter Water Sodium

A1 5.2 × 10−3 0.55
A2 1.5 × 10−2 0.054
D 6.25 × 10−4 3.0 × 10−4

E 0.010 0.15
M 0.18 1.2 × 10−4

N 0.30 0.022
Pr 1.76 0.004
Σ 6.81 40
Π 6.1 × 10−4 1.8 × 10−4

Table 2. Dimensionless parameters at h0 = 100 Å.

taking all other dimensionless parameters for water (table 2). The parameter sequence
E = 0.03, E = 0.04, E = 0.05 corresponds to three pairs of dispersion curves with
increasing maximal growth rate ω. Each pair consists of a solid and a dashed curve.
Figure 3(a) shows the influence of the evaporation number on the energy transport
on the surface as determined by the dimensionless number N . This influence is given
by the difference between the solid and dashed curves in each pair. The dashed curves
indicate cases with N = A2 = 0; the solid curves show cases with N = 0.3 and A2 = 0.
In the same way, figure 3(b) exhibits the influence of the evaporation number E on
the effective pressure. The dashed curves indicate cases with N = A2 = 0; the solid
curves show the cases with N = 0 and A2 = 0.015.

The results presented in figure 3 indicate that the effects of the energy transport
along the surface as well as the effective pressure on the stability of the liquid
film (as given by the difference between the solid and the dashed curves in each
pair) both increase with increasing evaporation number E. The values of E used to
demonstrate this effect are somewhat larger than the actual value E = 0.01 of the
evaporation number for water. According to our discussion of the base state in § 3,
large evaporation numbers make it impossible to use the slow evaporation limit, which
is relevant for regular fluids when the evaporation number obeys E � 1 and the
Prandtl number is O(1). To proceed with our analysis we therefore use the alternative
type of base state valid for circumstances where the Prandtl number obeys Pr � 1
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Material E = κ
θ/ρνL

Water 0.001
Ethanol 0.0005
Mercury 0.189
Lead 0.022
Potassium 0.098
Sodium 0.075

Table 3. Evaporation number for some materials at (
θ = 1 K).
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Figure 4. The influence of the interfacial energy flux and the effective pressure on the
dispersion curve. (a) A2 = 0 for all curves. N =0 (dashed curve), N = 0.011 (dotted curve),
N = 0.022 (solid curve). (b) N = 0 for all curves. A2 = 0 (dashed curve), A2 = 0.025 (dotted
curve), A2 = 0.05 (solid curve).

and the evaporation number is O(1). Molten metals seem to be good candidates for
this purpose. As the data in tables 2 and 3 show, they have small Prandtl numbers
and relatively large evaporation numbers E.

As a representative example of a molten metal, we consider molten sodium. A
detailed description of the properties of sodium is given by Foust (1972). The
configurational momentum balance contains the modulus βs associated with the
kinetics of attachment and detachment at the interface. This modulus enters the
dimensionless parameter A1. To make reasonable estimates of the magnitude of βs ,
we used experimental data relating the evaporating mass flux J with the pressure
deviation p − pv , where pv is the pressure of the vapour phase. Substituting these
data into the truncated version

βs =
ρ

J

(
p − J 2

ρv

)

of the configurational momentum balance (2.4c), we obtained rough estimates for βs .
Experimental data obtained by Yang et al. (1994) and Fedkin, Grossman & Ghiorso
(2005) then give βs values of the order of 106 and 105 kgm−2 s−1, respectively. These
values agree with estimates for coefficient A1 used by Ajaev & Homsy (2001).

The influences of dimensionless parameters on the dispersion curves are presented
in figure 4 for molten sodium (table 2). Figure 4(a) demonstrates the influence of
the surface energy flux as characterized by the dimensionless parameter N . The solid
line represents the behaviour of the growth rate ω for the parameter N = NNa for
molten sodium. The dashed line shows the case N =0 of no energy flux along the
liquid–vapour interface. The dotted line shows the case N = NNa/2. The dynamics of
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Figure 5. Three pairs of the dispersion curves for increasing parameter A1 = 0.6, A1 = 1,
A1 = 1.4. (a) Change in the influence of N . Dashed curves indicate cases with N = A2 = 0, solid
curves show cases with N = 0.022, A2 = 0. (b) Change in the influence of A2. Dashed curve
shows the case N = A2 = 0. Solid curves shows the case N = 0, A2 = 0.01.

these changes demonstrate that the increase of the energy flux on the film surface
decreases the maximal growth rate. The corresponding wavenumber slowly decreases
while the cutoff wavenumber slowly increases and thereby broadens the interval of
unstable modes.

Figure 4(b) demonstrates the influence of the effective pressure as characterized
by the dimensionless parameter A2. The solid line represents the behaviour with the
parameter A2 = (A2)Na for molten sodium. The dashed line shows the case A2 = 0 for
which the effective pressure is absent. The dotted line shows the case A2 = (A2)Na/2.
Increasing A2 narrows the interval of the unstable modes and decreases the maximal
growth rate. We therefore observe that the effective pressure exerts a stabilizing
influence on a film of molten sodium.

The stabilizing influences of the interfacial energy flux and the effective pressure
seem reasonable if we recall that both effects arise from dissipative mechanisms
(Fried et al. 2006). Another quantity strongly affecting the stability results is the
parameter A1, describing how far the system is from the saturation equilibrium.
To examine the changes this parameter causes, we use dimensionless parameters
for molten sodium and plot the growth rate ω for three different values of A1

(figure 5). The increasing parameter sequence A1 = 0.6, A1 = 1, A1 = 1.4, corresponds
to three pairs of curves with decaying maximal growth rate ω. The dashed curves
represent the cases with N = A2 = 0. The solid curves show the case with N =0.022
and A2 = 0 (figure 5a) and the case with N = 0 and A2 = 0.01 (figure 5b). We see
that A1 exerts a strong stabilizing influence on the system. With A1 increasing,
the maximal effective growth rate decays and the cutoff wavenumber decreases.
The relative influence (difference between the solid and dashed curves in the
corresponding pictures) of the interfacial energy flux (figure 5a) and the effective
pressure (figure 5b) decreases as the parameter A1 increases. This result implies that
the surface energy flux and the effective pressure both exert considerable influence on
the stability of a molten metal film only when the film is far enough from saturation
equilibrium.

To examine how the characteristic thickness h0 of the film influences the stability
of the system, we fix all parameters characterizing the physical properties of the
system independent of h0 and study the impact of varying h0. In so doing, we
consistently recalculate all dimensionless parameters depending on h0. The behaviour
of the dimensional maximal growth rate wm (in units of s−1, where wm is maximized
over the range of unstable wavenumbers) is shown in figure 6(a) for three particular
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Figure 6. Change in the dimensional maximal growth rate ωm (in units of s−1) due to the
change of (a) the initial dimensional layer thickness h0 (in units of m) at fixed temperature
difference 
θ = 2K , (b) the dimensional temperature difference 
θ (K) at fixed layer thickness
h =100 Å. The dashed curve shows the case with N = 0 = A2 = 0; the dotted line shows the
case with N = 0.022, A2 = 0; the solid curve shows the case with N = 0, A2 = 0.05.

cases. The dashed line indicates the dependence with no interfacial energy flux and no
effective pressure (N =A2 = 0). The dotted line shows the case A2 = 0 and N =0.022,
for which only the influence of the interfacial energy flux is taken into account. The
solid line demonstrates the case A2 = 0.015 and N = 0, for which only the effective
pressure is taken into account. We see that the stabilizing influence of the effective
pressure (difference between the solid and the dashed lines) is stronger than that
of the interfacial energy flux (difference between the solid and the dotted lines).
Moreover, the maximal growth rate ωm is not a monotonic function of h0. In the case
of the presence of the effective pressure only (the solid curve), the largest value of ωm

corresponds to larger initial film thicknesses h0 relative to the case A2 = 0, N = 0.022
(the dashed curve). On its own, the interfacial energy flux (the dotted curve) moves
the maximal growth rate ωm to the thinner initial film thicknesses h0. The figure also
shows that both effects are important for the stability of molten metal films with
thickness of 5–30 nm. Films of such thicknesses are common in applications such as
welding (Winkler & Amberg 2005).

Similarly in figure 6(b), we consider the change in stability that results when the
dimensional temperature difference 
θ across the film changes from 0 to 10 K. We
fix parameters that characterize the physical properties of the system independent
of 
θ and study the impact of varying 
θ while recalculating all dimensionless
parameters depending on 
θ . For this purpose, the initial film thickness remains
fixed at h0 = 100 Å. The dashed lines represents the case of zero interfacial energy
flux (N = 0) and zero effective pressure (A2 = 0). The dotted line shows the case with
A2 = 0 and N =0.022. The solid line represents the case A2 = 0.015 and N = 0. Again,
we see the strong stabilizing influence of both effects relative to the case N = A2 = 0.
As the temperature difference across the layer increases, the influences of the effective
pressure and the energy flux become more important.

From the base state time behaviour (figure 2), we expect the influence of all
considered effects to increase as the instant td of disappearance is approached. The
effective growth rate σ (t∗) as a function of the wavenumber is shown in figure 7 at
three different instants of time. We see that, in contrast to the results presented by
Burelbach et al. (1988), the maximal growth rate is not a monotonic function of time
for chosen parameter values. As t tends to td , the cutoff wavenumber increases –
i.e. the interval of the unstable modes becomes wider and the system becomes more
unstable. Figure 7 demonstrates that, for the chosen parameters, the stability of the
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Figure 7. Effective growth rate at different times: t = td/10 (dashed line), t = td/2 (dotted
line), t =9td/10 (solid line), where td = (2A1 + 1)/2E and A2 = 0.05, N = 0.022.

base state (3.6) does not change significantly for t < td . The effect is made evident on
comparing the results for σ (t �= 0) shown in figure 7 to the results for ω (t =0) shown
with the solid curve (A2 = 0.05) in figure 4(b). Therefore the influences of the effective
pressure and the energy flux along the surface remain important for all stages of the
base-state evolution. The stability results for σ quantitatively alter the corresponding
results for ω presented in figures 3–6 without inducing a qualitative change of the
reported effects.

The results of this section reveal that, for the parameter values considered, the
interfacial energy flux, governed by N , and the effective pressure, governed by A2,
stabilize the liquid layer. The film stability is more sensitive to variations of the effective
pressure than to the interfacial energy flux. In particular, the effective pressure term
strongly affects the cutoff wavenumber. The strong stabilizing effect of the effective
pressure may be explained by the presence of the additional (relative to the case
A2 = 0) capillary terms in the energy balance (2.13c) and in the tangential momentum
ballance (2.13d). Capillarity suppresses short waves and shifts the cutoff wavenumber
in the direction of long waves figure 4(b). Also, we see that the parameter A1,
characterizing the closeness of the system to the saturation equilibrium, exerts a
substantial influence.

5. Stability of the film with surfactant
In this section, we consider the influence of the interfacial energy flux and the

effective pressure on the stability of a liquid film consisting of a volatile solvent
and a non-volatile surfactant. A stability analysis for water-like liquids and common
surfactants is given by Danov et al. (1998). Based on the foregoing results, we focus
here on molten metals. For such liquids, dopants such as oxygen and sulfur play roles
analogous to surfactants in conventional liquids and, as such, are commonly referred
to as surfactants (Winkler & Amberg 2005). In this case, the expression (2.3) for the
interfacial energy ψx is replaced by

ψx = ψx
s − µsn

x − ηx
s (θ − θs),

where the chemical potential µ is defined as µ = ∂ψx/∂n and µs is its constant value
at θ = θs .
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The presence of the surfactant introduces additional terms into the system of
interface conditions (Fried et al. 2006), so that (2.4a)–(2.4e) are modified to become:

J = ρ(u · n − V ) = ρv(uv · n − V ), (5.1a)

θsη
x
s (KV − ∇s · us) = κ∇θ · n − lV mig, (5.1b)

A

6πh3
+ Sn · n −

(
p − J 2

ρv

)
= ψxK + (∇s · (2α� + λ(tr�)�)) · n, (5.1c)

Sn · t = (−µs∇sn
x − ηx

s ∇sθ + ∇s · (2α� + λ(tr�)�)) · t, (5.1d)

βsV
mig = −l

(
θ

θs

− 1

)
−

(
p − J 2

ρv

)
− ψs

(
n

ns

− 1

)
+ 1

2
ρ|u|2, (5.1e)

◦
nx + nx (∇s · us − KV ) = κx

n∇s · (∇sn
x) − κn(∇n) · n − nV mig. (5.1f)

Here, α > 0 and α + λ > 0 are the interfacial shear and dilatational viscosities. Also,
ψs and ns are the saturation values of the bulk free-energy density of the solution and

the bulk molecular density. The time derivative
◦
nx accounts for the surface molecular

density change at the interface z = h(x, t): given a normally constant extension of
a surface field ϕ (Cermelli, Fried & Gurtin 2005),

◦
ϕ can be related to the spatial

time-rate of ϕ via
◦
ϕ = ϕt + us · ∇sϕ. Also, � denotes the interfacial rate-of-stretch as

defined in terms of the interfacial limit of the bulk rate-of-stretch D and the interfacial
projector � = 1 − nn, by

� = �D�.

In the presence of a surfactant, the dependence of the disjoining pressure on the
bulk and interfacial surfactant molecular densities n and nx of the surfactant is
trivial. Following Danov et al. (1998), we assume that the disjoining pressure term
A/6πh3 depends on n and nx only through the Hamaker constant A. This simplifying
assumption may not generally hold. Performing self-consistent field calculations,
theoretical estimates of the Hamaker constant A can be obtained on the basis of a
multilayer film model (Müller et al. 2001). Following this approach, Gokhale, Plawsky
& Waymer (2005) determined the Hamaker constant A for a solution of Silwet L-77
in DI water in good agreement with experimental data. These authors also found that
a disjoining pressure model based on the representation A/6πh3, with the Hamaker
constant A estimated by this fashion, is applicable at film thicknesses of the order
of a few nanometres. This motivates the use of the disjoining pressure of this form
appearing in (5.1c).

The right-hand sides of the normal and tangential momentum balances (5.1c) and
(5.1d) acquire additional terms accounting for the influence of the surface viscosity.
The right-hand side of the configurational momentum balance (5.1e) acquires the term
−ψs(n/ns −1), showing an explicit dependence on the molecular density. Besides that,
the system involves the additional equation, (5.1f ), describing the balance between
the bulk and surface molecular densities. We scale the bulk molecular density n, the
surface molecular density nx, and the chemical potential according to

ñ =
n

ns

, ñx =
nx

nx
s

, µ̃ =
µ

µs

, (5.2)

where ns and nx
s are the saturation values of the bulk and surface molecular densities,

respectively. This gives rise to the following additional dimensionless parameters:

A3 =
ψsθs

l
θ
, Mn =

h0µsn
x
s c

2κν
, Pn =

ν

κn

, Pnx =
h0ν

κx
n

, b =
nsh0

nx
s

, Ω =
ξ

2ρνh0

. (5.3)
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Variable Units Value

ηx
s N m−1 K−1 4.3 × 10−4

ψx
s N m−1 1.9

ψs Jmol−1 10−3

nx
s mol m−2 1.3 × 10−5

ns mol m−3 0.1
ξ m Pa s 10−6

n∞ mol m−3 10−1

µs Jmol−1 103

κn m2 s
−1

4.3 × 10−8

κnx m2 s
−1

1.7 × 10−8

Table 4. Material properties. The values of ηx
s , ψx

s , nx
s , κn and κnx for sulfur in the molten iron

are taken from Winkler & Amberg (2005); the values of ns , ξ and n∞ are taken from Danov
et al. (1998). Estimates for ψs and µs are made on the basis of data provided by Tanaka &
Gubbins (1992).

Parameter Value

A3 1.8 × 10−4

M 5.7 × 10−4

Mn 8.6 × 10−3

N 0.1
Pn 4.6
Pnx 1.2 × 10−7

b 10−4

Ω 3 × 106

Σ 633

Table 5. Dimensionless parameters at h0 = 100 Å and 
θ = 2 K.

Here, A3 is the surfactant activity; Mn is molecular density Marangoni number; Pn and
Pnx are bulk and surface molecular density Prandtl numbers; b is the ratio of the bulk
and the interface saturation concentrations; and Ω is the dimensionless interfacial
viscosity. κn, κx

n and ξ are the surfactant bulk diffusivity, the surfactant interface
diffusivity, and the interfacial viscosity, respectively. We failed to find parameters
values for surfactants in molten sodium. For of ηx

s , ψx
s , nx

s , κn and κnx , we used values
for sulfur in molten iron provided by Winkler & Amberg (2005). For ns , ξ and n∞,
we used values provided by Danov et al. (1998). Finally, we estimated ψs and µs on
the basis of data provided by Tanaka & Gubbins (1992). The parameter values are
collected in table 4 and the associated dimensionless numbers resulting for h0 = 100 Å
and 
θ = 2, are given in table 5.

When the surfactant is present, the system of dimensionless equations (2.7)–(2.8)
governing the dynamics of liquid should be complemented with the equation for the
transfer of the bulk molecular density n. In dimensionless form, the bulk transport
equation is

Pn

Dn

Dt
= ∇2n.

On the substrate, we require that ∂n/∂z = 0. On the liquid–vapour interface, we
impose the conditions representing the dimensionless counterparts to (5.1). To close
the system of equations, we must add the sorption isotherm relating nx and n.
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Following the approach of Jensen & Grotberg (1993) and looking for the molecular
density solution in the form n(x, z, t) = n0(x, t)+ε2n1(x, z, t) (where ε is an appropriate
small parameter), we find that, to the leading order, the solution to the system
describing the evolution of the thin film with the surfactant splits into two subsystems.
The first subsystem, which determines how u, w and θ depend on z, has the form

u(z) =
px

2
z(z − h) +

V
h

z, (5.4a)

w(z) = −pxx

2

(
z3

3
− hz2

2

)
+

px

4
z2hx −

(
Vz2

2h

)
x

, (5.4b)

θ(z) = 1 +

(
A1J − 1 + A2

(
Σhxx − Π

h3

)
− A3(n − 1)

)
z

h
. (5.4c)

From (5.4), knowledge of p, h, V, J and n is sufficient to determine u, w and θ . The
second subsystem determines the long-wave evolution of the system and has the form

p = E2D−1J 2 +
Π

h3
− Σhxx (5.5a)

EJ = −ht + 1
12

(pxh
3)x − 1

2
(Vh)x, (5.5b)

NVx =

(
1 − A1J − A2

(
Σhxx − Π

h3

)
+ A3(n − 1)

)
1

h
− J, (5.5c)

pxh

2
+

V
h

+
2Mn

Pr
nx

x +
2M

Pr

(
A1Jx + A2

(
Σhxxx +

3Πhx

h4

)
− A3nx

)

= 2Ω
(
Vxxn

x + Vxn
x
x

)
, (5.5d)

(nx + bHn)t +

(
Vnx − b

Pnx

nx
x − bn

(
pxh

3

12
− Vh

2

)
− bhnx

Pn

)
x

= 0, (5.5e)

nx =
n

n + n∞
. (5.5f)

Equation (5.5f ) represents the dimensionless sorption isotherm, where n∞ is the
reference value of n. To investigate the stability of system (5.5), we perturb the
time-dependent base state, as characterized by ĥ, Ĵ , p̂, n̂, n̂x, and obtain a system

Ḣ (t) = F [H (t), n(t)], ṅ(t) = G[H (t), n(t)], (5.6)

of linear equations for the surface shape and the molecular density perturbation
amplitudes.

5.1. Base state

In addition to the equations (3.3), the base state includes the condition (n̂x +bn̂ĥ)t = 0
imposing surfactant balance in the film (Danov et al. 1998). The leading-order
solutions for variables Ĵ , θ̂ , p̂ retain the form given by (3.6b–d), but the film thickness
and the surface molecular density become:

ĥt = −1 + A2Π/ĥ(t)3 + A3(n̂ − 1)

A1 + ĥ(t)
E, (5.7a)

n̂x(t) =
1

2

(
1 + Λ + bn∞ĥ(t) −

√
(bn∞ĥ(t) + 1 + Λ)2 − 4Λ

)
, (5.7b)
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Figure 8. Film thickness evolution for different A3: A3 = 0 (dashed line), A3 = 0.1 (dotted line),
A3 = 0.2 (solid line). Other parameters were taken as A1 = 0.005, A2 = 0, E =0.01, b = 0.001,
nx = 0.1, n∞ = 0.1.

where Λ = n̂x(0) + bĥ(0)n̂(0) is a constant defined by the initial values at t = 0. Note
that the energy flux characterized by N does not affect the base state (5.7).

Equation (5.7a) for the evolution of the film thickness explicitly includes the
influence of the surfactant activity A3. The actual value of A3 is usually small
(table 5). To obtain a qualitative understanding of the effect of the surfactant on the
evolution of the base state, we therefore used much larger values of A3. Figure 8
shows the increase of the disappearance time td (when h = 0, in the case when the
liquid partially wets the substrate) as the surfactant activity A3 increases. In the case
when the liquid completely wets the substrate, the stationary state corresponding to
the layer adsorbed by the substrate is

h∗ =

(
−A3Π

1 + A2/(nx∗ − 1)

)1/3

.

5.2. Stability

To study the influence of the energy flux and the effective pressure, we limit the
stability analysis to the simple case of a quasi-static base state. Taking the base state
ĥ = 1 and n̂= n̂(0) and assuming that H ∼ eωt and n ∼ eωt , we obtain a dispersion
relation of the form

ω = ω(k, A1, A2, A3, D, E, M, Mn, Pr, Pn, Pnx, N, Π, Σ, b, Ω).

Because of the small value of A3, we did not observe a significant influence of this
parameter on the film stability. The influence of the coefficient A2 associated with
the effective pressure on the stability of the film with the surfactant is shown in
figure 9(a). The solid line shows the dispersion curve for A2 = 0.05 and the dashed
line shows the case A2 = 0. This result is qualitatively the same as for the case of
the surfactant-free film (figure 4b). Increasing A2 exerts a stabilizing influence on the
system. Also, we see that with surfactant, shown in figure 9(a) (the initial surface
molecular density nx = 0.1), the growth rate ω is substantially lower than that for
the surfactant-free case nx = n= 0 shown in figure 4(b). This indicates the stabilizing
influence of the surfactant. The influence of the effective pressure (difference between
the solid and the dashed lines) was found to be appreciable for all investigated values
of the initial surface molecular density nx(0) and other parameters corresponding to
molten metals.
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Figure 9. Change in the dispersion curve due to the change of (a) the effective pressure A2

(N = 0): A2 = 0 (dashed curve), A2 = 0.05 (solid curve). The initial surface molecular density
nx = 0.1. (b) the interfacial energy flux N (A2 = 0): N = 0 (dashed curve), N = 0.1 (solid curve).
Three pairs correspond to the initial surface molecular density nx = 0, nx = 10−4, and nx = 10−3.

Figure 9(b) shows the influence of the interfacial energy flux (difference between the
solid and the dashed lines) for nx(0) = 0 (upper pair of curves), nx(0) = 10−4 (middle
pair of curves), and nx(0) = 10−3 (lower pair of curves). The solid lines show the
dispersion curve for N = 0.1 and the dashed lines show the case N = 0. Aside from
the stabilizing influence of the surfactant, we see that as nx grows, the dashed and
solid curves approach one another, indicating a decreasing influence of the parameter
N on the stability. At nx = 10−3, the curves almost merge, indicating the negligible
influence of N . An explanation might be found in the fact that the interfacial viscosity
and, hence, the dissipation, increases with nx. Energy transport along the interface
therefore slows with increasing nx.

The calculations of this section demonstrate that the influence of the effective
pressure (difference between the dashed and the solid lines in figure 9a), governed by
A2, on the stability of the thin film remains significant even in the presence of the
surfactant. However, the results presented in figure 9(b) indicate that increasing the
amount of surfactant suppresses the energy flux along the interface, governed by N .

6. Summary
An analysis of the linear stability of the evaporating thin liquid film has been

performed. The model used in our analysis accounts for: (i) the influence of the energy
flux along the film surface; (ii) the influence of the effective pressure accounting
for vapour recoil. The results reveal conditions under which these two effects are
important. We find that these effects have a small influence for liquids like water and
ethanol, for which the evaporation number E is small. The effects turn out to be
appreciable for liquids with relatively large (E ∼ 0.1) evaporation numbers and with
small (Pr � 1) Prandtl numbers. In particular, we show that, for molten metals such
as sodium, a consideration of the effective pressure substantially affects the values
of growth rate and cutoff wavenumbers. When the interfacial energy transport and
effective pressure are negligible, our model reduces to that of Burelbach et al. (1988)
and, at N =A2 = 0, we recover their results.

We observe the stabilizing influences of the effective pressure for parameter values
corresponding to molten metals. This result follows from the fact that this effect
arises from additional dissipative mechanisms associated with the corresponding
terms (Fried et al. 2006). Specifically, we demonstrate that consideration of the
effective pressure makes it possible to observe the influence of the van der Waals
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interaction on the film evolution close to the instant of rupture. The analysis of
the base state shows that, for a liquid partially wetting the substrate, the disjoining
pressure shortens the evolution time of the evaporating film – the thickness of which
changes from the initial value to zero. When the liquid completely wets the substrate,
rupture does not occur and the film evolves into the stationary state representing a
thin liquid layer adsorbed onto the substrate. This result for a thin film is similar
to that obtained by Moosman & Homsy (1980) for an evaporating meniscus. The
expression for the thickness of the adsorbed layer obtained in our work agrees with
the estimate obtained by Wayner (1999). Thus, we demonstrate that the presence of
the effective pressure removes the degeneracy of the evolution of the base state with
respect to the cases when a liquid partially or completely wets the substrate.

Calculations by Burelbach et al. (1988) revealed limitations of the lubrication
approximation near the disappearance time td . At td , when the thickness h vanishes,
the vertical velocity becomes large according to ht ∼ 1/(A1 + h) (if A1 = 0), which
contradicts the lubrication approximation. The results of our analysis show that (i)
the change in the film thickness h is always singular and follows ht ∼ A2Π/(A1 +h)h3

for small h, even for the case A1 �= 0; (ii) the change in the film thickness h occurs
even faster than predicted by Burelbach et al. (1988). This reflects the influence of the
disjoining pressure.

The thin-film rupture times calculated by Williams & Davis (1982) and Yiantsios
& Higgins (1991) by means of linear and nonlinear theories are of the same order of
magnitude. Even though the rupture time determined by nonlinear theory is shorter
than that obtained by linear analysis, they give qualitatively the same estimates.
For this reason, we leave investigation of the influence of the energy flux on the
surface and the effective pressure on the nonlinear evolution of thin film for later
consideration.

Our calculations also show that, whereas the presence of a non-volatile dissolved
surfactant on the film interface suppresses the energy flux along the surface, the
effective pressure remains an important factor affecting film stability.

This work was supported by DOE. We thank V. Ajaev, X. Chen, S. Davis, G. Homsy,
M. Miksis and A. Shen for helpful discussions.

Appendix. Long-wave approximation
Here we provide some details of how the boundary conditions (2.7) and (2.8) can

be reduced to (2.9)–(2.11). We adopt a rectangular Cartesian basis {e1, e3}, where
the outward normal n, tangent vector t to the surface, curvature K , and velocity are
given by

n =
−hxe1 + e3(
1 + h2

x

)1/2
, t =

e1 + hxe3(
1 + h2

x

)1/2
, K =

hxx(
1 + h2

x

)3/2
, u = ue1 + we3,

with hx denoting the derivative of h with respect to the horizontal coordinate x.
Taking into consideration that

Dh

Dt
= hxu

i + ht = wi

(where the superscript ‘i’ indicates the interface), we find expressions for the normal
velocity V , the migrational velocity V mig , and the product KV of curvature and
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normal velocity as

V = ui · n =
−hxu

i + wi(
1 + h2

x

)1/2
=

ht(
1 + h2

x

)1/2
, (A.1a)

V mig = V − u · n =
hxu − w + ht(

1 + h2
x

)1/2
, (A.1b)

KV =
hthxx(

1 + h2
x

)2
. (A.1c)

Assuming that the horizontal scale of the liquid motion is significantly larger than
the vertical one and that the time evolution is slow enough, we apply a long-
wave approximation. Following Williams & Davis (1982), we take the dimensionless
wavenumber k to be a small parameter. According to this choice, we apply the change
of variables

x =
X

k
, z = Z, t =

T

k
,

and expand all variables in powers of k:

u = U + kU1 + · · ·, w = k(W + kW1 + · · · ), p = k−1(P + kP1 + · · · ),
θ = Θ + kθ1 + · · ·, J = J + kJ1 + · · ·.

Here, u, w, p, θ , J and h are functions of variables x, z and t , whereas their long-wave
counterparts U , W , P , Θ , J and H are functions of X, Z and T . To the leading order,
the normal, tangent vectors and the curvature are

n = −kHXe1 + e3 + o(k), (A.2a)

t = e1 + kHXe3 + o(k), (A.2b)

K = k2HXX + o(k2). (A.2c)

Using these expressions, we calculate gradients of the normal and tangent vectors,
projector �, bulk rate of stretch D and surface velocity us as

∇n = −k2HXXe1e1 − k3HXHXXe3e1 + o(k3), (A.3a)

∇t = −k3HXHXXe1e1 + k2HXXe3e1 + o(k3), (A.3b)

� = e1e1 + kHXe1e3 + kHXe3e1 + o(k), (A.3c)

D = 1
2
(2kUXe1e1 + (UZ + k2WX)e1e3 + (UZ + k2WX)e3e1 + 2kWZe3e3) + o(k2),

(A.3d)

us = �u =
(
U + k2

(
HXW − H 2

XU
))

e1 + kHXU e3 + o(k2). (A.3e)

Now, we obtain a leading-order estimate of the terms KV and ∇s · us entering the
equation (2.8b); the surface rate of stretch �, the projections of Dn onto the directions
n and t entering the equations (2.8c, d):

KV = k3HT HXX + o(k3), (A.4a)

∇s · us = � : ∇us = k(UX + HXUZ) + o(k), (A.4b)

� = �D� = k(UX + HXUZ)e1e1 + k2HX(UX + HXUZ)e1e3

+ k2HX(UX + HXUZ)e3e1 + o(k2), (A.4c)

2Dn · n = −2k(UX + UZhX) + o(k2), (A.4d)

2Dn · t = UZ + o(k). (A.4e)
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To calculate the projection of the surface divergence ∇s · (2ᾱ� + λ̄(tr�)�) onto the
normal direction in the momentum balance equation (5.1c) we note that

n · (∇s · (2ᾱ� + λ̄(tr�)�)) = � : ∇((2ᾱ� + λ̄(tr�)�)�n) − (2ᾱ� + λ̄(tr�)�) : ∇n.

Since (2ᾱ� + λ̄(tr�)�)�n = 0, we need only calculate the second term, which is

2ᾱ� + λ̄(tr�)� = (2ᾱ + λ̄)k(UX + HXUZ)e1e1 + o(k).

Using the expression (A.2e) for the ∇n we obtain

(2ᾱ� + λ̄(tr�)�) : ∇n = o(k2),

which gives the projection of the surface divergence onto the normal direction

n · (∇s · (2ᾱ� + λ̄(tr�)�)) = o(k2). (A.5)

To the leading order, this term does not contribute in the normal component of
the momentum balance equation (5.1c). The tangential component of the surface
divergence entering equation (5.1d), is

t · (∇s · (2ᾱ� + λ̄(tr�)�)) = � : ∇((2ᾱ� + λ̄(tr�)�)� t) − (2ᾱ� + λ̄(tr�)�) : ∇t.

(A.6)

Direct calculation shows that,

(2ᾱ� + λ̄(tr�)�)� t = ξnxk(UX + HXUZ)e1 + o(k), (A.7a)

(2ᾱ� + λ̄(tr�)�) : ∇t = o(k4). (A.7b)

In the expressions (A.7), we follow Danov et al. (1998) and assume that the interfacial
viscosity 2α + λ arises only due to the presence of the surfactant nx on the surface
and is therefore 2α + λ = ξnx. Calculation of the first term on the right-hand side of
(A.6) gives

� : ∇((2ᾱ� + λ̄(tr�)�)� t) = k2ξ nx
X(UX + HXUZ)

+ ξ nxk2 [(UXX + HXXUZ + HXUZX) + HX(UXZ + HXUZZ)] + o(k2). (A.8)

Using the explicit expression (2.12a) for the velocity component U , we can calculate
the following identities

UX + HXUZ = VX,

UXX + HXXUZ + 2HXUZX + H 2
XUZZ = VXX.

Finally, we obtain the tangential component of the surface divergence in equation
(5.1d) as

t · (∇s · (2ᾱ� + λ̄(tr�)�)) = k2ξ
(
VXXnx + VXnx

X

)
+ o(k2). (A.9)

Note that, in the surfactant-free case nx = 0 and

t · (∇s · (2ᾱ� + λ̄(tr�)�)) = 0.

To the leading order, the governing equations become

−PX + UZZ = 0, (A.10a)

−PZ = 0, (A.10b)

ΘZZ = 0, (A.10c)

UX + WZ = 0; (A.10d)
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the boundary conditions (2.7) reduce to

W = 0, U = 0, Θ = 1; (A.11)

further using the equations (A.4), we can now rewrite the boundary conditions on
liquid–vapour interface (2.8) as

E(J + kJ1) = k(−hT − hXU + W ), (A.12a)

kNVX = −ΘZ − J, (A.12b)

kΠ

h3
− P − 2k2VX = −kE2D−1J 2 + k3ΣhXX(1 − CΘ), (A.12c)

−1

2
UZ = kMPr−1(ΘX + hXΘZ), (A.12d)

A1J = Θ + A2

(
P

k
− 1

2
(U 2 + k2W 2) − E2D−1J 2

)
. (A.12e)

To retain the physical effects important for our analysis, we adopt the scales

E = kĒ, D = k3D̄, A1 = Ā1, A2 = kĀ2,

N =
N̄

k
, M =

M̄

k
, Ω =

Ω̄

k2
, Π =

Π̄

k
, Σ =

Σ̄

k3
,

where the quantities with superposed bars are assumed to be of the order of O(1) as
k → 0. Finally, noting that

k3Σ(1 − Cθ) = Σ̄ − k2M̄Pr−1θ = Σ̄ + O(k2),

we may reduce the system (A.12) to

ĒJ = −hT − hXU + W, (A.13a)

N̄VX = −ΘZ − J, (A.13b)

Π̄

h3
− P = −Ē2D̄−1J 2 + Σ̄hXX, (A.13c)

−1

2
UZ = M̄Pr−1(ΘX + hXΘZ), (A.13d)

A1J = Θ + Ā2(P − Ē2D̄−1J 2). (A.13e)
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